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Abstract
Based on the three-band Hubbard model, we studied the distance and orientation
dependence of the interaction between two small ferromagnetic polarons
induced by extra holes doped in the CuO2 plane. Through the binding energy
calculation of the three-hole-doped system, we have shown that the favourable
hole distribution pattern is mainly determined by the sum of all pairs of two-
hole energy changes. In the case of four-hole doping, we get a schematic phase
diagram in parameter space for the stable configuration.

1. Introduction

In undoped high-Tc cuprates, the ground state is an antiferromagnetic (AF) Mott insulator with
nearest-neighbour (nn) Cu2+–Cu2+ AF exchange interaction in the CuO2 plane. Upon doping,
holes enter into the oxygen p-orbit in the CuO2 plane, which induce an equivalent ferromagnetic
(FM) coupling for the Cu2+ ions adjacent to the partially empty oxygen orbit [1], thus resulting
in a small FM cluster of five mainly parallel copper spins (named polaron) in the CuO2

plane [2, 3]. These spin-polarized clusters have been demonstrated by experiments [4, 5]. In the
low-doping region, the local AF order is destroyed while the long-range AF order is reserved
with lower Neel point. There exists a critical doping concentration at which an insulator–metal
transition takes place. With increasing doping concentration, the single-hole polarons start
to build up a conducting network, i.e. the gap states become more and more extended and
build up a conducting network [6]. For example, doping La2CuO4 with Sr, the AF–spin-glass
transition happens at a doping density of about 2% and the onset point of the metal–insulator
transition is at 5%. A review on theoretical and experimental result about the properties at
finite doping is given in [7]. Also, a number of doped holes tend to organize themselves into
different configurations. Extensive neutron scattering measurements revealed that the extra
holes may form a quasi-one-dimensional (1D) structure called a stripe, where each of them
runs parallel to one of the principal lattice directions, e.g. in the (10) direction [8–10] or (11)
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direction [11–13]. Recently, using scanning tunnelling microscopy (STM), two-dimensional
checkerboard modulation has been observed under a magnetic field [14], and also in zero
field [15] in Bi2212 and in lightly hole-doped Ca2−x Nax CuO2Cl2 [16].

Much theoretical work has studied the possibility of real-space stripe patterns or
checkerboard patterns in doped high-temperature superconductors. Emery et al [17] and some
later work [18] propose that phase separation and inhomogeneous spatial charge ordering arises
from a competition between the short-range attractive interactions and long-range Coulomb
repulsion between holes. However, White and Scalapino [19] have shown that the presence of
striped phases as the ground state of large t–J clusters does not require long-range Coulomb
forces to stabilize the stripes. Also, striped states with charge-density waves (CDWs) along
the stripes can give approximate checkerboard patterns [20]. Anderson [21] and Huang et al
[22] suggest that the observed checkerboard patterns may well be induced by the long-range
Coulomb repulsion, but require a rather small dielectric constant. Lemanski and coworkers [23]
give the restricted phase diagram of a simple spinless Falicov–Kimball model and it displays
rich behaviour, illustrating both possibilities in different regions, and predict that Kivelson–
Emerey scenario of phase separation [17] does not require the long-range Coulomb interaction
to stabilize stripes. Some other theoretical works [24] have proposed their own microscopic
model to interpret the recent experimental result. In the three-band Hubbard model of high-Tc

cuprates, a diagonal stripe pattern has been examined by Hartree–Fock (HF) method [6] and
it was found that the four-lattice stripe state is stable at 1/8 doping level by using a variational
Monte Carlo method [25]. To our knowledge, the recently observed checkerboard pattern has
not been discussed in the three-band Hubbard model.

Instead of investigating a specific distributed pattern of the polarons for a given
doping concentration, here we will start from the three-band Hubbard model under the HF
approximation to compare the ground-state energy of the static distribution of several extra
holes for the given parameters in the low-doping limit where the system is in the insulating
state. Also, we will determine which distribution is the preferable one in a given parameter
region, i.e. the phase diagram in parameter space. We base this on the idea that each excess
hole slightly perturbs the electronic structure in its vicinity by forming some separated small
polarons where all holes are completely localized when more holes are doped [2, 3]. We focus
on investigating the interaction between two small polarons. The interaction depends on the
relative distance and orientation and the parameter values of the model Hamiltonian. Also, we
assume that the binding energy of a many-hole-doped system equals the sum of the two-hole
binding energy over all pairs of holes (hereafter named the S-method for simplicity). This
rather crude approximation is verified to be effective in getting a favourable hole distribution
pattern. We apply our idea to the four-hole-doped case and get a schematic phase diagram.

The paper is organized as follows. In section 2 the Hamilton and the relevant Green’s
functions in the HF approximation are introduced. In section 3, the main formulae and methods
used in the calculation are given. Also, we test the validity of the S-method by comparing the
energy change values by a self-consistent method and the S-method for certain three-hole-
doped systems. Then, in section 4, the distance and orientation dependence of the energy
change in two-hole-doped system are shown. For the four-hole-doped case, by the S-method,
the favourable configurations with different parameter values are discussed. Also, in section 5,
we summarize our conclusions.

2. HF approach and Green’s function

We start from the three-band Hubbard model which takes the dx2−y2 band of the Cu ions and
the px(y) bands of the oxygen ions into account. Within the HF approximation, the Hamiltonian
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can be simplified to H MF = ∑
σ H MF

0σ + H MF
int , where

H MF
0σ =

∑

m

(
εd + U

〈
nd

m−σ

〉)
nd

mσ + εp

∑

m′
np

m′σ + t
∑

〈m,m′ 〉

(
d†

mσ pm′σ H.c.
)

(1)

H MF
int = −U

∑

m

〈
nd

m↑
〉 〈

nd
m↓

〉
. (2)

The notation is standard, except that
〈
m, m ′〉 denotes Cu and its four nearest-neighbour (nn)

oxygen ions. The nn Cu–O hopping t is always set to unity. The parameters are usually assumed
to be U ≈ 8, ε = εp − εd ≈ 3, εd ≈ 0, and εp ≈ 3. In the undoped case, the oxygen sites are
doubly occupied while the copper site is singly occupied, and thus the copper spins are aligned
antiferromagnetically through super-exchange interaction. In order to describe the AF ordered
state, the unit cell is doubled. Due to the mean-field renormalization effect, the two copper on-
site energies in the magnetic unit cell are given by ε1σ = εd + U

〈
nd

1−σ

〉
, ε2σ = εd + U

〈
nd

2−σ

〉
.

Considering the symmetry of AF state, it follows immediately that
〈
nd

1σ

〉 = 〈
nd

2−σ

〉
. Therefore

we can use the notation
〈
nd

σ

〉
and consider these quantities as modulated with twice the lattice

period. In k space, the Hamiltonian H MF
0σ for a fixed spin direction, say σ = ↑, is written as a

matrix which can be found in [3].
Now we calculate the Green’s function according to

G0σ
(−→

k
)

=
[(

E − H MF
0σ

)−1
]
. (3)

Defining η2 = D(E)/16t2, where D (E) = D1 (E) D2 (E), Di (E) = (E − εi)
(
E − εp

)

− 4t2 (i = 1, 2), and ε1,2 = εd + U
〈
nd

↓,↑
〉
. Therefore in k space the Green’s function for Cu

ion with spin ↑, i.e. the (11) component of (3) is given by:

G0↑
00

(−→
k

)
=

(
E − εp

)
D2 (E)

16t4
[
cos2

(
kx +ky

2 a
)

cos2
(

kx −ky

2 a
)

− η2
] . (4)

For σ = ↓, the Green’s function can be expressed by the same formula as equation (4) with
only one change: replacing D2 (E) by D1 (E). The corresponding real-space Green’s functions
can be obtained by doing Fourier transformation. For simplicity, the diagonal matrix element
G0σ (−→r1 ,−→r2 ) with |(−→r1 − −→r2 )x | = |(−→r1 − −→r2 )y | = l will be denoted as G0σ (l). If we plot the
imaginary part of the Green’s function G0σ (0) versus energy E , we obtain information on the
band structures. Symmetric linear combinations of the oxygen states lead to the decoupling of
two dispersive bands of oxygen type. Four bands remain: the upper and lower Hubbard bands
of mainly copper character and two broader bands of mainly oxygen type between them. In
the undoped case, the lowest three bands are occupied (in an electron description). The charge-
transfer gap (CT gap) denotes the energy difference between the lowest unoccupied level of the
upper Hubbard band and the highest occupied level of the upper oxygen band.

3. Main formula

In the undoped region, the long-range AF order remains. When one hole is doped at the site
neighbouring (0,0), we assume that the copper spin at the site (0,0) is spontaneously flipped,
changing the spin densities from 〈nd

σ 〉00 to 〈nd′
σ 〉00. This scenario has already been used by

several authors [2, 3]. The perturbation is V σ = U(〈nd′
−σ 〉00 − 〈nd−σ 〉00). Through the Dyson

equation (1 − G0σ (0)V σ )Gσ (0) = G0σ (0), we can obtain the perturbed Green’s function
Gσ (0), and hence the band structure of the disturbed lattices can be calculated. The calculations
in which the further neighbours have been taken into account showed that, as in [3], the spin
polarization increases slightly, but a smaller increase in the binding energy was found. So, the
localized perturbation theory is a good approximation.
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Figure 1. Three-hole-doped distributed patterns.

For the two-hole-doped case, two FM spin polarons will be formed, e.g. one at the site
(i, i ), and the other at ( j, j ). G0σ and V σ can be written as a 2 × 2 matrix [26]:

G0σ =
(

G0σ (0) G0σ (|i − j |)
G0σ (|i − j |) G0σ (0)

)

, (5)

V σ = U

(
�〈n〉 0

0 �〈n〉
)

(6)

where �〈n〉 ≡ 〈nd′
−σ 〉 − 〈nd−σ 〉. The equations for the new spin density 〈nd′

σ 〉 should be
solved self-consistently. Upon doping, the number of localized states with energy EL in the
energy gap is determined by the poles of Green function Gσ , i.e. the EL satisfy the equation
(1 − G0σ V σ ) = 0. If n spins flipped, there would be n localized states split off from the
upper oxygen band into the CT gap. The electrons are removed from these localized states [2].
Therefore the Fermi energy (EF) lies between the upper band edge and the localized state.

The total energy change of this two-hole-doped system due to the perturbation of the
Hamiltonian is given by �E(2) = �E int + �E loc, where �E int = 2(〈nd

↑〉〈nd
↓〉 − 〈nd′

↑ 〉〈nd′
↓ 〉) is

the variation coming from the H MF
int , and �E loc arises from the change in density of state and

the formation of the split-off states [27]:

�E loc =
∑

σ

∫ EF

−∞
E�Nσ (E) dE

�E loc =
∑

σ

EL − 1

π

∑

σ

∑

α

∫

band
arctan

(
Im(G0σ (0)V σ (α, α))

Re((1 − G0σ (0)V σ (α, α)))

)

dE (7)

where EL signify the energies of the occupied localized states measured from the neighbouring
band edges. In order to get the energy band edge, we use the criterion 0 � η2 � 1 [3, 28].
V σ (α, α) denote the diagonal element of the perturbation matrix.

The matrix approach can be generalized to three, four, etc, hole-doped cases. But here we
propose an approximate method. Let us define the binding energy of an n-hole-doped system
as relative quantities from which the large-distance limit case has already been subtracted,
�Eb(n) = �E(n) − n�E(1), where �E(n) is the energy change of the n-hole-doped system
and �E(1) denotes the energy change of the one-hole-doped case at the same parameter
set. By the S-method, we neglect the three-body interaction energy, and the binding energy
�Eb(n) is assumed to be the sum of the two-hole binding energies of all pairs of them, i.e.
�Eb(n) = ∑

〈i j〉 �Eb(2). So, in the S-method, the energy change �E ′(n) of an n-hole-doped
system can be calculated from the following formula:

�E ′(n) =
(∑

〈i j〉
�E(2)

)

− (n2 − 2n)�E(1). (8)

To illustrate the validity of the S-method, we calculate the energy change �E(n) by the
self-consistent method and the S-method for a certain three-hole-doped system in figure 1.
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Table 1. The energy change calculated by the self-consistent method (the left column under the
corresponding parameter) and the ‘S-method’ (the right column under the corresponding parameter)
for different hole distribution patterns of a three-hole-doped system.

(U, ε)

(6, 2.5) (6, 3) (7, 3)

Pattern �E(3) �E ′(3) �E(3) �E ′(3) �E(3) �E ′(3)

A1 −0.799 05 −0.811 61 −0.693 75 −0.702 46 −0.852 51 −0.861 7
B1 −0.804 32 −0.835 96 −0.681 44 −0.694 32 −0.862 01 −0.896 03
C1 −0.817 04 −0.846 10 −0.690 28 −0.695 70 −0.873 23 −0.907 47
D1 −0.799 92 −0.822 02 −0.697 62 −0.705 72 −0.858 76 −0.877 97
I P −0.790 29 −0.6726 −0.8493

Table 2. The energy change and the Cu-spin polarization for the undoped and doped cases with
two holes in a certain parameter set.

(0, 0) (2, 2)
(0, 0) (24, 24) 1 hole

U ε 〈nd↑〉 〈nd↓〉 〈nd′
↑ 〉 〈nd′

↓ 〉 �E(2) �E(2) �E(1)

6 3 0.229 19 0.979 65 0.742 04 0.322 11 −0.458 99 −0.446 84 −0.224 2
7 3 0.163 13 0.983 59 0.767 62 0.234 59 −0.577 82 −0.566 2 −0.282 55
8 3 0.119 82 0.985 00 0.788 43 0.172 94 −0.606 69 −0.635 46 −0.317 05
9 3 0.090 72 0.985 36 0.803 34 0.130 69 −0.648 81 −0.672 3 −0.336 02

Each symbol represents a polaron and other Cu ions and O ions are all omitted. The vertical
and horizontal units are 2a. The results are listed in table 1. The left column under the
corresponding parameter (U, ε) represents the self-consistent results �E(3), and the right
column under the same parameter (U, ε) represents the results �E ′(3) by the S-method. A1,
B1, C1, D1 are the corresponding pattern labels in figure 1. I P denotes the independent-
polaron case in which three polarons are an infinite distance apart.

By comparing the �Eb(3) calculated by the self-consistent method and the S-method,
respectively, from the results listed in table 1, we can see that, in some cases, the three-body
interaction energy (�E(3)−�E ′(3)) amounts to more than 50% of the �Eb(3) given by the S-
method. However, neglecting the three-body interaction energy, the order of the energy change
�E ′(3) by the S-method is the same as the order of This is equivalent to the conclusion that
only the pair interaction determines the favourable hole distribution pattern by just comparing
�E ′(n) of different n-hole-doped configurations by the S-method. Thus, from the plot of the
two-body energy change versus distance, it is easy to determine the stable distributed pattern
of doped holes in the CuO2 plane.

4. Result

4.1. Two-hole-doped case

Table 2 gives the result of the two-hole-doped case. We can see that, when two holes are at an
infinite distance, the energy change is equal to two times �E(1), which is the energy change of
the one-hole-doped case with the same parameters. When the distance between them is finite,
an effective interaction potential between them can be obtained.

As an example, in table 2 we list the energy change of two holes positioned at two points,
(0, 0), (2, 2) and (0, 0), (24, 24) respectively, under different parameter sets (U, ε). It is obvious
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Figure 2. The energy change for the two-hole-doped system as a function of the relative distance
between the two induced polarons in a certain parameter set.

that, even with the same parameter set, the energy changes �E for two different distances
between two holes are different. After calculations of the energy change for a number of
different distances and different parameter sets are carried out, the �E versus distance curves
can be plotted in figure 2. From the 3rd and 5th (or 4th and 6th) columns, we can see that the
Cu spin and its four nn Cu spins adjacent to the doped hole will be aligned ferromagnetically,
as reported in previous works [2, 3, 6]. In the large-U limit, the potential between two polarons
is repulsive and decays with increasing relative distance. In the case of moderate U , the
interaction can be attractive, i.e. the two holes can be in a stable state when they are distributed
in a certain distance range.

4.2. Four-hole-doped case

When there are four holes doped into the system, six possible distributed patterns are proposed,
as shown in figure 3: (i) diagonal checkerboard pattern A (

√
2a × √

2a); (ii) checkerboard
pattern B (2a × 2a); (iii) diagonal checkerboard pattern C (

√
8a × √

8a); (iv) checkerboard
pattern D (4a × 4a); (v) along the diagonal (11) direction (l = √

2a) pattern E; (vi) along the
vertical (01) direction (l = 2a) pattern F; and (vii) along the diagonal (11) direction (l = √

8a)
pattern G.

In the parameter sets of various Coulomb repulsions U and site energy differences
ε = εp − εd, by comparing the energy changes �E of the six patterns and the four independent
polarons which are denoted by I P, we obtain the following schematic phase diagram in figure 4.
In most intermediate parameter regions, the two-dimensional checkerboard patterns are more
favourable. Patterns A, B, C are two-dimensional checkerboard-like structures. For the pattern
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Figure 3. Representative patterns of the stable hole distribution for a four-hole-doped system: the
arrows correspond to the polarization of Cu ions. The circles represent the excess holes in the
oxygen sites. Dashed lines label the small polarons.

Figure 4. Schematic phase diagram of stable hole distribution for four-hole-doped system: I P
(independent polarons); A (diagonal checkerboard-like phase) (

√
2a ×√

2a); B (checkerboard-like
phase) (2a × 2a); C (diagonal checkerboard-like phase) (

√
8a × √

8a); and D (checkerboard-like
phase) (4a × 4a).

(This figure is in colour only in the electronic version)

denoted by I P, there is a repulsion between two holes when they are at a finite distance. So the
more dispersive the holes are, the lower the system energy is, and the ‘evaporating’ effect will
happen in the original configuration. In the top-left corner, the favourable pattern is D or I P.
One-dimensional diagonal (vertical) full-filled (half-filled) stripe patterns do not appear in our
phase diagram. We also note that some distributed patterns may have very close energies, e.g.
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at the point (U, ε) = (6, 3.25), the energy of the stripe pattern G is higher than that of pattern
D by only 0.007 44t . So, if we consider the fluctuation, the stripe pattern G may also appear.

It should be added that some of the result may be a consequence of the HF approximation
and may not survive the addition of fluctuations. Also, we have just included the on-site
Coulomb repulsion term U on Cu. It is energy unfavourable for several extra holes to
concentrate on a larger cluster. The ground state of one additional hole is one small polaron
with a turned spin. Two or three additional holes would create two or three additional small
polarons [2, 3]. The long-range Coulomb repulsion between holes is neglected in the Hubbard
model.

5. Summary

In summary, we have studied the three-band Hubbard model under the HF approximation in the
framework of the self-consistent Green’s function method at the temperature T = 0. We have
shown that the favourable hole distribution pattern is mainly determined by the sum of all pairs
of two-hole energy changes. In the four-hole-doped system, we have obtained the favourable
distribution patterns in the reference parameter set. In the large-U region, isolated small FM
polarons are stable. In most intermediate parameter regions, two-dimensional checkerboard-
like patterns are favourable.
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